
The $As_2F_{11}^-$ Ion

By P. A. W. DEAN, R. J. GILLESPIE,* and R. HULME (Department of Chemistry, McMaster University, Hamilton, Ontario, Canada)

Summary N.m.r. evidence is presented for the presence of the $As_{2}F_{11}^{-}$ ion in the products of reaction of AsF_{5} with $(R_{4}N)AsF_{6}$.

It has been shown¹ that a mixture of AsF_5 and AsF_6^- (as the tetrabutylammonium salt) in methylene chloride undergoes fast fluorine exchange on an n.m.r. time-scale at all temperatures studied, and it has been suggested that the fluorine-bridged $As_2F_{11}^-$ ion may be an intermediate in the exchange process. Ions of the type $(As_nF_{5n+1})^$ have also been postulated² to account for the differences between the low-temperature i.r. spectrum of $NOF_3,xAsF_5$ and the i.r. spectrum of $NOF_2^+AsF_6^-$. There has, however, been no definitive evidence for the existence of the $As_2F_{11}^$ ion, and preparative fluorine chemists have often used AsF_5

as a fluoride acceptor, in preference to SbF_5 , to ensure formation of a simple hexafluoro-anion.

We have found that when the solvent is removed at -78° from sulphur dioxide or anhydrous hydrogen fluoride solutions of equimolar amounts of AsF₅ and (Et₄N)AsF₆ or (Bu₄N)AsF₆, quantitative addition of AsF₅ to the salts has occurred giving products (I) and (II), respectively. There is also some evidence that larger amounts of AsF₅ can be complexed at low temperatures. At room temperature (I) and (II) are initially colourless, but with time some charring of (II) occurs. Both products have low vapour pressures [ca. 0.5 mm. and 2.1 mm. at 0° for (I) and (II), respectively]; the i.r spectrum of the vapour confirms it to be AsF₅.

The ¹⁹F n.m.r. spectrum of (II) in sulphuryl chlorofluoride was obtained; we were unable to find a suitable lowtemperature solvent for (I). At -140° the spectrum of a product of composition Bu₄N⁺[AsF₆(AsF₅)_{0.94}]⁻ in SO₂ClF showed, in addition to a single line from the solvent, the more complex spectrum in the fluorine-on-arsenic region that is shown in the Figure. The single line F_d, at +61.6 p.p.m. from external CFCl₃† is attributed to AsF₆⁻. The resonances F_a, F_b, and F_c, at +21.1, +48.6, and +85.0 p.p.m. from external CFCl₃† have intensities 1:8:2 and are assigned to the As₂F₁₁⁻ anion:

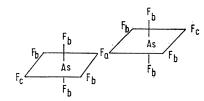


FIGURE. The ¹⁹F n.m.r. spectrum of $Bu_4N^+[AsF_6(AsF_5)_{0.94}]^-$ in sulphuryl chlorofluoride solution at -140° .

The fine structure in the spectrum compares well with that

† Chemical shifts were measured relative to the solvent line and converted to external CFCl₃ using δ (CFCl₃) = δ (SO₃ClF) - 99.1 p.p.m.

observed for the $Sb_2F_{11}^-$ ion.³ The resonance F_b is a double doublet by coupling to both F_a and F_c , whilst the resonance F_c is a quintet by coupling to the four closest fluorines only, coupling to F_a being near-zero. The signal due to Fa is then expected to show nine lines from coupling with the eight fluorines F_b ; the centre five of these can be seen in the fine structure of F_a . The coupling constants J_{ab} , J_{bc} , and J_{ac} are 51, 127, and *ca*. 0 Hz., respectively. These values are close to those observed¹ between fluorines bonded to arsenic in the $AsSbF_{11}$ ion $(J_{ab}, J_{bc}, and$ $J_{ac} = 47$, 126, and *ca*. 0 Hz., respectively).

The i.r. spectra of both products were obtained on the powders between silver chloride plates. Both show complex absorptions between 650 and 770 cm.⁻¹ which are assigned to stretching modes of the terminal fluorines. In addition, (I) gives a weak single band at 481 cm.⁻¹ and

Our observations are in accord with the formulation of the products (I) and (II) as salts containing the As_2F_{11} ion. The i.r. spectra of both products, and the low-temperature $^{19}\mathrm{F}$ n.m.r. spectrum of (II) in $\mathrm{SO}_2\mathrm{ClF}$ are consistent with the anion having the expected fluorine-bridged structure.

We thank the Directorate of Chemical Sciences of the United States Air Force Office of Scientific Research for financial assistance.

(Received, July 7th, 1969; Com. 983.)

- ¹ S. Brownstein, Canad. J. Chem., 1969, 47, 605.
 ² K. O. Christe and W. Maya, Inorg. Chem., 1969, 8, 1253.

⁸ R. J. Gillespie and K. C. Moss, J. Chem. Soc. (A), 1966, 1180; J. Bacon, P. A. W. Dean, and R. J. Gillespie, Canad. J. Chem., 1969, 47, 1655. ⁴ J. Weidlein and K. Dehnicke, Z. anorg. Chem., 1966, 348, 278.

- ⁵ R. J. Gillespie and G. Pez, Inorg. Chem., 1969, 8, 1229.
- ⁶ P. A. W. Dean and R. J. Gillespie, unpublished observations.

⁽II) a similar band at ca. 500 cm.⁻¹, in the region expected for vibrations involving stretching of the As-F-As bridge. Christe and Maya² observed a band at 491 cm.⁻¹ for $NOF_3, xAsF_5$ which they attributed to a polymeric anion. The corresponding vibration $\nu(Sb-F-Sb)$ for the Sb_2F_{11} anion has been observed at 523 cm.⁻¹ in $\text{VO}_2+\text{Sb}_2\text{F}_{11}$ ^{-,4} $485 \text{ cm.}^{-1} \text{ in } \text{Se}_4^{2+} (\text{Sb}_2\text{F}_{11}^{-})_2, 5 \text{ and } ca. 479 \text{ cm.}^{-1} \text{ in } \text{CsSb}_2\text{F}_{11}^{-1}, 6$